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Abstract—Babel is an open-source language interoperability
framework tailored to the needs of high-performance scientific
computing. As an integral element of the Common Component
Architecture (CCA) it is used in a wide range of research projects.
In this paper we describe how we extended Babel to support
interoperable tuple data types (structs). Structs are a common
idiom in scientific APIs; they are an efficient way to pass tuples of
nonuniform data between functions, and are supported natively
by most programming languages.

Using our extended version of Babel, developers of scientific
code can now pass structs as arguments between functions
implemented in any of the supported languages. In C, C++ and
Fortran 2003, structs can be passed without the overhead of
data marshaling or copying, providing language interoperability
at minimal cost. Other supported languages are Fortran 77,
Fortran 90, Java and Python.

We will show how we designed a struct implementation
that is interoperable with all of the supported languages and
present benchmark data compare the performance of all language
bindings, highlighting the differences between languages that
offer native struct support and an object-oriented interface with
getter/setter methods.

I. INTRODUCTION

Babel [1] addresses widespread interoperability requirements
of high-performance scientific applications that are mainly
caused by (a) the overwhelming amount of legacy code still in
use and (b) the trend to integrate various mathematical models,
usually implemented by different teams in different languages,
in order to increase simulation precision, e. g., climate models
might be combined with social models to predict emissions
of carbon dioxide. Developing a common language ecosystem
for all components is for most applications infeasible, both for
technical and economical reasons.

One paradigm to manage this complexity is component based
software design. This approach can greatly facilitate reuse,
interoperability, and composability of software. Consequently, it
has become very popular in the design of business applications
and internet technology and there is large number of widely
available frameworks, e. g., CORBA/CCM [2], [3], Microsoft’s
(D)COM [4] and .Net [5], or Sun’s JavaBeans [6]. The
Common Component Architecture (CCA) [7] is a joint effort by
researchers from both academia and U. S. national laboratories
to establish and adapt these techniques for scientific computing.
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The CCA basically mediates how components interact with
each other and with the underlying framework.

Babel is based on the scientific interface definition language
(SIDL), which builds on previous work such as CORBA [2]
or COM [8] by tailoring the idea to the needs of scientific
computing. SIDL provides a language-independent object
oriented programming model and type system. This allows
components to share complicated data structures such as multi-
dimensional arrays, interfaces, or exceptions across various
languages. Babel generates the necessary glue code that maps
these high-level interfaces to a particular language ecosystem.
As such, it can be used stand-alone or as part of the full
CCA [9] component framework, which provides additional
capabilities such as dynamic composition of applications.

One of Babel’s main design principles is to scale well with
a growing set of supported languages. Currently, backends are
available for most traditional languages relevant to the high-
performance computing community including various versions
of Fortran, C/C++, Java, and Python. While the main focus is
on fast in-process communication, there is also full support
for transparent remote method invocation (RMI) [10]. In the
latter case, caller and callee may reside in a different address
space or on different machines.

With its focus on high-performance computing, Babel has
first-class support for fundamental numeric types and multi-
dimensional arrays including array strides, dynamic ranges,
and ordering specifications (row-major vs. column-major).
In this paper, we discuss why and how tuple data types
have been added to this mix and how they map to native
language constructs such as structs, records, or derived types
(Section II-IV). Section V discusses performance and code
size consideration for supported language bindings.

II. DESIGN PRINCIPLES

SIDL structs are user-defined data types that map to
corresponding language constructs found in most imperative
programming languages, e. g., structs in C/C++, records in
Pascal, or derived types in Fortran. They represent a useful
alternative for classes whose main purpose is to group seman-
tically related data together; see Figure 1 for an example in
SIDL. The mode-attribute in before the argument types in
the example specifies that the argument is passed by value.
It serves a similar purpose as the intent (in) attribute in
Fortran. Other mode attributes are out and inout.



class Date { struct Date {

int getMonth(); int month;
void setMonth(in int month); int day;
int getDay(); int year;

void setDay(in int day); }
int getYear();
void setYear(in int year);

}

Fig. 1. Comparison of a simple SIDL struct and an equivalent class declaration.

The use of an explicit class has the main advantage that the
actual storage layout is hidden in the class and can easily be
changed without effects on dependent code. Structs, on the
other hand, can be accessed faster in most languages and require
less code to be written, thus effectively reducing development
effort.

The particular design choices for the addition of SIDL structs
were governed by the following goals:!

o Performance A method call to getter and setter routines
for a SIDL class is always a virtual function call that,
in general, involves dynamic dispatch and marshaling of
arguments and return values. For regular Babel classes, this
overhead is usually easily amortized over the amount of
work in the procedure. However, getter and setter routines
execute very small amounts of code. Thus, the overhead
compared to natively supported structs can be substantial.

o Development Effort Regular babel classes are more
verbose than structs. They (a) require the declaration of
access methods for each data member, (b) have to be
implemented by the user, and (c) are often less concise in
their use compared to the clean syntax usually provided
for field accesses.

o Completeness Babel tries to map SIDL constructs and
types to a particular language in a way that makes
experienced developers feel at home. A struct feels often
more natural for a particular purpose than a fully-fledged
SIDL class.

o Compatibility Compatibility is important in two as-
pects. First, related systems such as CORBA [2], [3] or
WSDL [11] already support the concept of structs; SIDL
structs thus facilitate the development of compatibility
layers. The second aspect is compatibility of user-defined
SIDL interfaces for existing legacy software. The addition
of SIDL structs often allows to wrap these interfaces with
little or no code. This is not only faster, it also feels more
natural to people familiar with the existing interface.

SIDL structs have been designed with these considerations
in mind. In particular, they support fast data exchange between
C/C++ and Fortran 2003. The latter is a new Babel binding
supporting Fortran 2003 features such as ISO Bind (C)
compatibility and type extension.

SIDL structs may contain any SIDL type including arrays,
and raw arrays (r-arrays). In particular, structs can be nested
inside of other structs. R-arrays are a special SIDL feature that

INote that their implementation varies widely among the set of supported
Babel languages; details are discussed in Section IV.

allows for low-level access to numeric arrays (cf. Section III).

There is currently no support for arrays of structs. While
this would be possible, the implementation is non-trivial and
we found that feature not heavily requested by users. Future
extensions of Babel might change this however.

For regular classes, memory is automatically allocated and
freed by Babel via a reference counting scheme. This is
important as Babel applications often contain modules written
in a variety of languages with different approaches to memory
management and garbage collection. However, there is no
reference counting for structs. It is the responsibility of the
programmer to make sure that memory is properly allocated
and released and that there are no dangling references once a
struct is freed. Babel generates corresponding support functions
in order to do so for languages without dynamic memory
allocation such as Fortran 77.

All Babel objects support transparent remote method in-
vocation (RMI) [12]. This means that the user’s code stays
exactly the same, no matter if an object is local or remote.
For each struct, Babel therefore generates a serialization and
de-serialization routine that assists in marshaling data for wire
transfers. This code is automatically generated as a part of the
client stub and does not require user modifications.

III. BABEL ARCHITECTURE

At its heart, Babel is a command-line tool that compiles
SIDL interface definitions into glue code that is generated in
one of the seven supported languages.

Babel provides a traditional object-oriented programming
model with single inheritance and interfaces that can have
multiple implementations. By default, all functions are virtual,
i.e., a function being called always depends on the dynamic
type of the associated object rather than the static type of
the object’s reference. Babel also provides implicit reference
counting and memory (de-)allocation.

Restricting Babel to the least common denominator across
the whole set of supported languages would be a non-
practical approach. Instead, Babel tries to take advantage
of native language features such as built-in data types or
method overloading whenever possible and provides reasonable
alternatives in the remaining cases, e. g., overloading symbols
is supported in most object oriented languages while unique
identifiers are required for earlier dialects of Fortran. Across
all supported languages, Babel provides sophisticated features
such as transparent support for remote method invocation,
overloading, inheritance, and exception handling, e. g., it is
common use to derive a Python class from a class written in
Fortran to overwrite a subset of the member functions.

In order to achieve this, Babel employs a C-based inter-
mediate object representation (IOR). The IOR is exactly the
same, no matter which language has been used to implement
or invoke a particular method. The term “object” in IOR refers
to all of the supported data structures, including structs and
enumerations, rather than just objects in the sense of object-
oriented programming. The SIDL language uses the term “class”
to describe the latter.



The IOR is essential to achieve scalability across a growing
set of languages. Any language binding essentially needs
to translate from and to Babel’s IOR thereby achieving full
interoperability with all other supported languages.

Under the hood, the IOR corresponds mainly to the storage
layout and calling conventions used in C. The reasons are
twofold. First, C allows for fine grained control about how
things are laid out in memory. Second, with few exceptions,
most notable earlier Fortran standards (Fortran 95 and earlier),
almost all languages support some kind of C compatibility layer
effectively making C the lingua franca amongst programming
languages. The IOR representation of a (class-)object is the
entry point vector (EPV), which is a record containing function
pointers to all the methods of the object. This is comparable
to a virtual function table in C++.

Figure 2 depicts the control flow of a local Babel function
call. On the client side, a so-called stub is generated that
converts arguments to Babel’s IOR representation, calls the
proper method entry point from the object’s EPV, and—if
necessary—converts return values to the representation used
in the original language. On the server side (skeleton), the
inverse operations are performed, i. e., arguments are converted
from IOR to the particular implementation language, the
user-supplied implementation is called, and return values are
converted back to Babel’s IOR. In addition, the skeleton is
responsible to catch exceptions thrown in the implementation
and convert them to a language-independent representation.

Arrays in Babel come in two different flavors:

e SIDL arrays are managed by the Babel runtime and are
available in all variations of shape and dimension and
stride. In many languages, access to the array elements
is provided via a function interface; some languages
bindings also provide a native interface to access the
array’s elements.

e Raw arrays (r-arrays) are a low-level alternative to the
fully-fledged SIDL arrays that direct allow access to
the underlying data structures. They provide the trade-
off between comfort and performance. For example, in
C, a one-dimensional raw single-precision array will be
represented as (float «).

Unlike regular SIDL arrays, r-arrays adhere to several con-
straints. Among other things, they must be contiguous blocks
of memory organized in column-major order. Also, they can
only be passed in in or inout mode and must retain their
shape across method invocations. These restrictions also apply
to structs containing r-arrays either directly or indirectly via
another nested struct. The Babel compiler makes sure that these
limitations are satisfied at compile time.

Raw arrays can be either of constant size or dynamically
sized. If a dynamically sized array is passed as argument
to a function, Babel requires the size of the array to be
calculable from a symbolic expression statically defined in
the SIDL interface definition. This size expression may only
contain arithmetic operators, constant values and other (integer)
arguments of that function call. If an r-array is a field of a SIDL
struct, the requirement is that the size-expression may only refer

only to (integer) fields of the same struct. This way structs are
self-contained and can be passed as arguments to function calls.
Because of the memory management restrictions for r-arrays
mentioned above, structs containing r-arrays (either directly or
via a nested struct) cannot be used as return values of functions
or as out-arguments. The Babel compiler will automatically
reject such functions. If such a behavior is desired, regular
SIDL arrays should be used instead.

IV. LANGUAGE BINDINGS

The implementation of the language bindings in Babel differs
in respect of performance, convenience and level of integration
with the host language (“nativeness”). Table I gives a high-level
overview of the different struct implementations. More details
on the implementation of arrays inside of structs are given in
the comparison chart in Table II. The following paragraphs
discuss all the language bindings in more detail.

A C

In the C language, the raw IOR is presented to the user (a
struct). In terms of performance, this is the baseline. Since
the IOR coincides with the native representation no conversions
are necessary and no performance penalty needs to be paid.

Figure 3 shows what happens when a C client calls a server
also implemented in C. When the user writes a Babel method
invocation, the client-side stub is invoked. The stub performs
an indirect call of the method via the EPV. Since the stub is so
tiny, Babel generates it as inline-attributed function, such
that the only overhead is the cost of the indirect function call,
which will be inserted by the C compiler in lieu of the Babel
method call written by the user.

For local calls, the server-side skeleton is not needed and the
EPV points directly to the server implementation. In a remote
call, the EPV points to a function that serializes all arguments
and pushes them over the network. On the server side, the
reverse actions are performed prior to calling the user’s server
implementation.

B. C++

C++ is practically a superset of C that covers almost 100%
of the language. For the SIDL-struct implementation this
has the implication that no performance penalty is paid for
conversion. To provide the programmer with a more object-
oriented representation, Babel generates a C++ class’ that
inherits from the IOR. The class has a constructor/destructor
pair, access functions and also defines an assignment operator
such that creating copies of the C++ wrapper class can be
created easily. The class also has methods used by the RMI
functionality to (de-)serialize the struct from/into a string. An
example C++ class for the struct in Figure 1 is shown in
Figure 4. The use of the field access functions is optional—it
is still possible to access the publicly inherited fields directly—
but, if used, they convert the IOR data types into their C++
equivalents: For example, (char =) -strings are converted

2Technically it is also a st ruct, such that all the fields of the parent struct
remain public.
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Fig. 2. Babel method invocation. Arguments and return values are converted to Babel’s intermediate object representation (IOR) before being passed.

Language Appearance Argument passing  Field access Implementation approach

C native fast fast struct (direct access to IOR)

C++ native fast fast like C

Fortran 2003  native+functions  fast fast (mostly) use C interoperability to access IOR via a derived type

Fortran 90 native slow fast IOR is copied into a F90 derived type

Fortran 77 functions fast slow opaque object with access functions for each field

Python native fast slow IOR is presented as a Python object

Java native slow fast IOR is copied into a Java object

TABLE I
IMPLEMENTATION OF SIDL STRUCTS IN LANGUAGES SUPPORTED BY BABEL
Language SIDL Arrays R-arrays
Size-expression Fixed-size

C Pointer to IOR+access macros Array pointer (e.g., intx a;) Embedded array (e. g., int a[42];)
C++ Template+overloaded []-operator ~ Array pointer Embedded array

Fortran 2003  Access functions

bind (C) -pointer
(e.g., type (c_ptr);)

C-Interoperable array (e. g., int
sidl_int), dimension (1)

(kind=
a)

Fortran 90 Native Fortran array or access functions—depending on data type
Fortran 77 Opaque pointer with access functions

Python Numpy arrays [13] or generic sequence types

Java INI array class wrapping the IOR

TABLE 11
IMPLEMENTATION OF ARRAYS AS STRUCT FIELDS IN BABEL

to a C++ std: :string object, SIDL arrays are converted
to the appropriate instantiations of the sidl::array< >
template.

Contrary to the C binding, C++ servers come with an actual
skeleton, which is used to convert C++ exception handling into
SIDL exception variables. The client-side stub looks strikingly
similar to the one used by the C binding, with additional
code that converts any SIDL exceptions thrown by the invoked
function to a C++ exception.

C. Fortran 77

Languages like Fortran 77 and Fortran 90/95 do not have
the necessary compatibility with C. In Fortran 77, the struct
is presented as an opaque integer parameter that comes with

associated access functions for each field of the struct. While
this notation is more verbose than, e. g., the field access operator
in C, it is still relatively cheap: the only performance penalty
is a function call per field access. The access functions are
implemented in C and are automatically generated by Babel
in a way such that they are callable from Fortran. They take
care of converting IOR data types to their Fortran equivalents.
Figure 5 shows an example of how a field access is performed
in legacy Fortran programs.

Memory management can be tricky in Fortran 77. The Babel
compiler uses tagged pointers to determine the ownership of
memory. If the lowest significant bit of a pointer is set, then
the associated memory is borrowed. This implementation detail
is completely transparent to the user.



b = isValid(example_obj, date, &exception);

inline sidl_bool cal_example_isValid (
/x in */ cal_example self,
/x in */ const struct cal_Date__datax date,
/% out */ sidl_Baselnterface *_ex) {
sidl_bool _result;
_result = (xself—>d_epv—>f_isValid)(self,date,_ex);

Server
sidl_bool cal_example_isValid (
/% in %/ cal_example self,
/x in */ const struct cal_Date__datax date,
/% out */ sidl_BaseInterface *exception) {
sxexception = 0

/* User implementation %/

Fig. 3. Near-zero overhead call with a struct argument from C into C

namespace cal {
xRk
* Symbol "cal.Date” (version 1.0)
*/
struct Date : cal_Date__data {
Date();
“Date();
Date(const ::cal::Date &src);
Date& operator =(const ::cal::Date &rhs);
void _destroy();
::sidl::BaseClass  get_d_object() const;
void set_d_object(const ::sidl::BaseClass &val);
::sidl::Baselnterface get_d_interface();
void set_d_interface(const ::sidl::Baselnterface  &val);
csidliint  get_month() const;
usidl::int  get_day() const;
usidli:int  get_year() const;

void set_month(const ::sidl::int &val);
void set_day(const :sidl::int &val);
void set_year(const :sidl::int &val);

// Assume that the object takes ownership of all
// data and references previous owned by the rhs.
::cal:Date& operator =(const struct s_Date__data &rhs);

// Assume that the dest is uninitialized
// Copy from this object into dest.
void tolOR(struct s_Date__data &dest) const;

on entry.

void serialize(::sidl::io::Serializer &pipe,
const :std:string  &name, const bool copyArg) const;

void deserialize(::sidl::io::Deserializer &pipe,
const :stdistring  &name, const bool copyArg);

Fig. 4. Babel-generated C++ interface for the struct in Fig. 1

subroutine processDate(d)

C inout cal.Date d

integerx8 d

int*8 month

call cal_Date_get_month_f(d, month)
C do something

Fig. 5. Opaque pointers and access functions in Fortran 77

There is no difference between SIDL arrays and r-arrays
in Fortran 77. Both are accessed through the same function
interface.

D. Fortran 90

In contrast to Fortran 77, Fortran 90 introduces a native
representation for structs: Fortran derived types. The resulting
interface is very clean; the downside is that the skeleton needs
to copy the IOR C-struct into the binary-incompatible Fortran
derived type. This means that while access to the fields is cheap,
passing a struct to a function always involves a copy operation.
The skeleton implementation actually uses two indirections:
the “regular” skeleton (in C) takes care of converting IOR to
Fortran 90 data types. It then passes each (converted) field
as an argument to the second part of the skeleton, which is
implemented in Fortran 90 and copies all the arguments into a
Fortran derived type which is the passed to the actual server-
side implementation. This also works for structs nested inside
of other structs.

SIDL arrays are generally passed as an opaque pointer with
getter/setter functions. The names of these functions are con-
siderably shorter than their Fortran 77 equivalents because they
are declared as module procedures which has the effect of over-
loading a generic name as in val get (array, J)
and have the compiler decide which function to invoke based
on the arguments. SIDL arrays of numeric types are wrapped
into a derived type containing an opaque pointer to the IOR
and a Fortran pointer to the array’s raw data. Since data
structure interoperability with C is not standardized, Babel
uses libchasm [14] to generate an array adhering to the
Fortran-vendor’s specific data layout. In Fortran 90, r-arrays
are always wrapped into SIDL arrays; there is no user-visible
difference between the two.

Another peculiarity of the Fortran 90 binding is the genera-
tion of type modules. Due to limitations of the language it is
necessary to split some derived type declarations (such as the
declaration of the Fortran equivalent of a SIDL class) into a
separate module. Only this way can circular dependencies be
avoided, which would occur in situations where SIDL classes
or interfaces are passed as method arguments. Apart from the
additional file being generated, this has no practical effect for
the user.

i,

E. Fortran 2003

Fortran 2003 finally adds C interoperability via the bind (C)
intrinsic module. Babel uses this feature to declared as structs
as bind (c) -attributed derived types. This eliminates all of



module cal_Date
use, intrinsic :: iso_c_binding
use sidl
type, bind(c) :: cal_Date_t
integer(c_int32_t) :: month
integer(c_int32_t) :: day
integer(c_int32_t) :: year
end type cal_Date_t
private :: get_month_p
interface get_month
module procedure get_month_p
end interface
private :: set_month_p
interface set_month
module procedure set_month_p
end interface

end module cal_Date

Fig. 6. Fortran 2003 bind (C) -interoperability with C structs

the copying operations that were necessary in the Fortran 77
and Fortran 90 language bindings. An example is shown in
Figure 6. This combines the performance of direct access with
the convenience of a native data type. Since some data types
(such as Boolean and Character types) are still not binary
compatible, access functions are still generated, but they need
only be used for these specific types. In contrast to the older
Fortran versions, the Babel compiler generates skeletons for
Fortran 2003 servers directly in Fortran instead of in C. Because
the Fortran 2003 language only allows interoperable functions
to return scalar values [15], the Babel compiler generates for
these functions an additional wrapper of the Fortran skeleton
in C, which converts an out-parameter to the return value.

F. Python

In Python, a C extension module for a Python object
resembling the struct is generated. The extension module
translates each access to a member of the Python object to an
access of the corresponding field in the underlying IOR. The
C extension also converts Python objects to the IOR. It is, for
instance, possible to assign a Python list to an array field in a
struct:

myStruct.doubleArray = [ 1.0, 2.0, 3.0 ]

or we can even write

myStruct.objectArray = [ sidl.BaseClass.BaseClass() |

In this example, the struct objectArray is an array of SIDL
objects that is a field of the struct s. We are assigning a new
instance of the generic SIDL base class.

The skeleton performs the necessary type conversions,
acquires the Python interpreter’s global interpreter lock (GIL)
and starts the interpretation of the server code. By convention,
Babel expects server implementations to return a tuple of return
value and all out-attributed parameters. Upon completion, the
skeleton copies the elements of the return tuple back into their
corresponding out-parameters. It also handles the conversion
of possible Python exceptions into their SIDL counterparts.
The C extension module takes care of object (de-)serialization
and of translating python field accesses into the appropriate
actions on the IOR.

package cal;

public class Date {
public int month;
public int day;
public int year;

/xx This is the holder inner class for inout

* and out arguments for type <code>Date</code>. x/
public static class Holder {

private cal.Date d_obj;

/%% Create a holder class
* with an empty holdee object. =/
public Holder() { d_obj = null; }

/x% Create a holder with the specified object. */
public Holder(cal.Date obj) { d_obj = obj; }

/*xx Set the value of the holdee object. */
public void set(s.Date obj) { d_obj = obj; }

/% Get the value of the holdee object. */
public s.Date get() { return d_obj; }

}

public Date() { }
public Date(int month, int day, int year) { ... }

Fig. 7. Java representation of a SIDL struct

/" SIDL definition
void advanceDate(inout cal.Date date);

cal.Date d = new cal.Date(01, 19, 2038);
cal.Date.Holder _d = new cal.Date.Holder(d);

try { -
advanceDate(_d); / modifies the inout argument
} catch (EpochFail ex) {}

Fig. 8. Using a Holder class instead of pointers

There is no difference between SIDL arrays and r-arrays in
Python, but for numeric data types the Babel compiler uses the
more efficient Numpy arrays [13] instead of regular Python
sequence types.

G. Java

The Java binding uses an approach similar to the Python
binding: A copy or reference to the IOR is used to create a
Java object using the Java Native Interface (JNI) [16]. This
makes passing a struct to/from a Java method more expensive
but makes field access cheap because it does not go through
the JNI. The stub uses the JNI to convert between the IOR
and an object residing in the Java Virtual Machine (JVM).

As shown in Figure 7, a SIDL struct is represented as a Java
class with the Java counterparts of all the IOR-struct’s fields as
public members. The class also contains a public inner Holder
class used for out and inout arguments: Since Java does
not support pointers, this class can be used to “hold” the struct
in these cases. A code example is shown in Figure 8.

H. Remote method invocation

As indicated in Section II, Babel supports transparent remote
method invocation [12]. A remote method call involves serial-



izing the arguments into a byte-stream, which is transmitted
over the network. On the server side, the data is unpacked and
the method implementation is invoked. Structs are serialized by
packing all fields in a first-to-last, left-to-right order. Structs are
essentially fixed-shape trees. A struct nested inside of another
struct is serialized in-place by calling its respective serialization
function. The server side performs the exact opposite actions
to unpack the byte-stream again.

V. EXPERIMENTAL EVALUATION AND DISCUSSION

To illustrate the performance considerations pointed out in
Section IV, we ran benchmarks with structs of different sizes
and with different data types. The different instances of the
benchmarks were automatically generated from a language
independent intermediate representation with the help of the
BRAID code generator®. For each of the data types (bool,
float and string) we generated SIDL definitions for structs
containing 1...128 fields of that types.

The first two benchmarks consist of passing a struct to a no-
op function (“call”) and passing it (‘“access”) to a function that
accepts a struct A = {ag,...,a,} as in-argument and returns
the field-reversed A’ = {ay,...,ap} in an out-argument; an
operation that is possible with all data types. In the beginning,
the struct fields are initialized to t rue, 7, and to a 16-character
string filled with 13 spaces and 7 printed to 3 digits, respectively.

The third benchmark “bsort” shows what happens if there
are many (O(n?)) field accesses in the server function. This
benchmark takes a struct of n integer fields as in-argument and
returns a sorted struct as out-argument. The sorting algorithm
is a naive bubble sort which has a quadratic worst-case behavior.
The input is always reversed-sorted, and including the copying
operation from input argument to output argument this results
in a total of 2n + n? field accesses.

The client implementation in all the benchmarks is always
written in C. Since C always has the least overhead involved,
this ensures a fair comparison of the different Babel language
bindings.

The plots in Figures 9, 10, 11 and 12 show the number of
instructions executed on a x86-64 machine*. This number
was measured by querying the instructions-performance
counter provided by the perf [17] interface of Linux 2.6.32.
In order to eliminate the instructions used for start-up and
initialization, the instruction count of one execution of the
benchmark program with one iteration was subtracted from
that of the median of ten runs with 106+1 iterations each. The
result was divided by 10 and plotted into the graph. The plots
are logarithmic in both axes. The z-axis denotes the number of
fields in the struct. The y-axis shows the number of instructions
executed by the benchmark (lower values are better).

The benchmarks reflect many of the considerations put
forward in the previous section:

3http://compose-hpc.sourceforge.net

4The test machine was an Intel Xeon E5540 running at 2.53GHz, with 8
threads and 6GiB of main memory running Ubuntu 10.04. The tests were
compiled with the C, C++ and Fortran compilers of GCC 4.5.1 using standard
optimization settings (-02). The Python version was 2.6.5 and we used the
SUN HotSpot 64-Bit Server version 1.6.0.22.

o C is the fastest of the implementations, since it operates
directly on the bare IOR.

o In C++ a constant overhead® has to be paid due to the
way the language binding is implemented: The method
dispatch mechanism goes through a wrapper function that
encapsulates the called method in a try/catch-block,
where possible C++ exceptions are translated into SIDL
exceptions.

o Thanks to the C interoperability, Fortran 2003 is—for most
data types—also offset from C only by a constant amount.
One exception is the bool/access benchmark which uses
the getter/setter function because of the incompatible
binary representation of truth values between the two
languages. In the Fortran 2003 case, the overhead is not
paid for exception handling but for casting C pointers to
their Fortran counterparts, transparently performed by the
skeleton wrapper function.

o Fortran 77 has a low function call overhead, but a high
cost for field accesses. In the “call”’-testcases it is even
faster than Fortran 2003, but the cost for the field access
(cf. the “access” benchmarks) is higher because of the
additional function call.

o The copy operation performed by the Fortran 90 imple-
mentation makes it stand out in all the “call”’-testcases.
Although this is obscured by the log/log scale of the
plot, the overhead is actually linear (as one would expect
from a copy operation). The overhead can be neglected
if all the struct fields are accessed, as can be seen in the
“access”’-benchmarks.

o Python and Java incur the most overhead. In Java, field
access is considerably cheaper as in Python, but the
function call overhead is higher. Function calls in Java
are expensive because of the conversion of the arguments
from IOR to JNI objects. For higher6 workloads, however,
the just-in-time-compiled Java version quickly overtakes
the interpreted Python implementation.

o The “bsort” benchmark shows what happens when there
are many field accesses: This benchmark makes it clear
that the copy overhead incurred by the Fortran 90
implementation (the skeleton copies the IOR into a native
derived type) becomes negligible when there is a lot of
work happening in the function. Particularly interesting
is also the performance of the Java language binding,
which shows that asymptotic behavior of Java is closer
to the statically compiles languages, when the workload
becomes significant.

Because the conversions from and to IOR often involve
copying operations, strings are more expensive than other data
types. This is reflected by the benchmarks in Figure 11: For all
languages other than C and C++, the copy operation dominates
the instruction count, making them virtually indistinguishable in
performance. Comparing the “call” with the “access” testcase
shows that Fortran 2003 does not copy the strings unless

5~ 30 instructions in the bool benchmark
In our benchmarks the intersection is around n ~ 10.
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accessed.

In Section I we argued that because of the direct field access,
structs offer a better performance compared to (SIDL) classes.
The performance of the Fortran 77 language binding with its
getter/setter function interface is also a lower bound for the
performance of a class. In a class each member access would
have to be another Babel method call.

A. Code size considerations

Scientific computing interfaces are often bound to specific
mathematical models that render software engineering princi-
ples such as encapsulation (data hiding) counterproductive. By
using a struct instead of a SIDL class, the interface is directly
exposed and accessible and not hidden behind a pointless access
function that does little more than wrapping class members.

Compared to using SIDL classes, structs can therefore
significantly reduce the amount of glue code in an application;
glue code that would have to be written by the user. As
a consequence, they effectively reduce code size in most
languages.

Structs are also a little more memory efficient. A SIDL class
must also carry meta information such as pointers to its EPV
and the EPV of each parent class. A struct occupies exactly
the space occupied by its fields.

VI. A CASE STUDY: FLUXGRID

To demonstrate the real-world practicability of this feature
we are now reporting our experience with a physics code from
Los Alamos National Laboratory which was wrapped into
a Babel component by Tech-X corporation [18], [19]. The
program describes itself as follows [20]:

fluxgrid is a code for reading in output from
Grad-Shafranov equilibrium solvers and producing
useful output for other codes. There are interfaces to
a large number of commonly-used equilibrium codes,
both direct and indirect, and adding interfaces to new
codes is usually very simple. It currently can be used

Quadratic number of accesses of n integers

as either a standalone code or as a library which can
be embedded into other codes such as nimset.

This code is a very typical example for the type program
that is being componentized via Babel: It consists of about
twenty Fortran 90 modules which are connected via a function
interface that uses Fortran derived types (structs) to exchange
data between the modules. The SIDL file, which is too long for
inclusion in this paper, contains 15 different struct definitions;
some of them nested. The median number of struct fields is
19; the largest struct counts 53 fields, the smallest only four.
Combined, the structs contain 105 (SIDL) arrays and 8 other
structs (which are also defined in the same file). The arrays
have a dimensionality of up to 5. The most common base
types for struct fields are int, double and string. To aid the task
of defining the interface, the developers at Tech-X crafted a
Python script that parses the Fortran sources and automatically
generates the SIDL file with all the derived types used by
fluxgrid’s interfaces.

An external constraint of the design was that the resulting
code must compile with a selection of legacy compilers. The
“babelized” version therefore uses the Fortran 90 binding instead
of the more efficient Fortran 2003 binding. Since the majority of
the data is encapsulated inside of SIDL arrays (cf. Section IV-D)
the overhead is still acceptable. Another design decision was
that the existing Fortran 90 sources were not to be modified in
the process. For this reason, an additional layer of Fortran 90
glue code was added, which translates the derived types from
the Babel method arguments into the derived types used by
the original Fortran implementation. With the Fortran 2003
language binding, the SIDL arrays could be replaced by r-
arrays and this copy operation could have been eliminated.

Our measurements include this additional overhead. Using
the gegdsk input set provided by Tech-X, we measured a
1.3% overhead for calling the Babel version of fluxgrid
from a driver written in C++; whereas the original version is
driven by a Fortran program that calls the library functions
directly.



This example shows that the Babel struct extension was
successfully used in practice to wrap existing code into a well-
defined component interface, while retaining the original data
layout’ for input and output. It is now possible to orchestrate the
Fortran 90 core directly from C++ and Python which enables a
much tighter coupling between components written in different
programming languages than previously possible.

VII. OUTLOOK AND FUTURE WORK

With the addition of struct data types, Babel comes one step
closer to providing a full programming ecosystem between mul-
tiple languages. Using classes to exchange data is oftentimes
an overkill; structs allow users to write more poignant and
compact code that will also have higher performance. Babel’s
struct support degrades gracefully (to auto-generated classes or
function interfaces) for languages which do not support such
a feature natively. The highest performance is achieved by the
C, C++ and Fortran 2003 language bindings: They provide
zero-copy, direct access struct implementations that are set off
only by a constant factor in most cases (comparable to a native
call in C).

With this feature in Babel we provide the computational
scientist with another (and much requested) choice for the
data structures to use for their interfaces. The measurements
included in this paper show the detailed performance trade-
offs for different data types and programming languages. We
hope for this work to make choosing the most appropriate
representation for a specific domain a little easier.
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